Revisiting 50 years of ISC data: Worldwide improvement in earthquake locations and seismic monitoring capabilities

Felix Waldhauser

Lamont-Doherty Earth Observatory Columbia University

IUGG Prague, June 27, 2015

Outline

- Motivation for an ISC catalog relocation effort
- Procedures for global-scale double-difference
 hypocenter relocation
- Initial results and the case for continuing ISC efforts

Teleseismic DD studies – 1999 Izmit/Düzce Mw 7.4 sequence

Regional aftershock relocations:

DD distance weighting:

Teleseismic, multi-phase HypoDD algorithm

Waldhauser and Schaff (JGR 2007)

Streaking aftershocks off-shore northern Sumatra

- 1. Fluids expelled from oceanic crust cause failure of imbricate faults.
- 2. Aftershock streaks controlled by inherited sea floor fabric.
- ➔ Improved spatial resolution reveals temporal signals.

Waldhauser et al (2012)

Scaling up from regional to global DD processing

We combined double-difference procedures developed for *massivescale* regional catalog and *real-time* relocation in California with those developed for specialized *teleseismic* applications.

Northern California

Catalog relocation (1984-present)

- Seismographs......900
- Events......532,000
- Seismograms......20,000,000
- Phase readings......10,000,000

Real-time: http://ddrt.ldeo.columbia.edu http://www.ncedc.org/ncedc/

The world (ISC, EDR, IRIS)

Archive since ~1960

- Seismographs......18,000
- Seismograms......200 Tb
- Phase readings......100,000,000

Global DD (gDD) processing

Steps for reprocessing the combined archives of the ISC, EDR, EHB, and IRIS, including 3 million earthquakes.

- (1) Establish baseline catalog \rightarrow *EHB-DD*
- ② Fix large location errors in ISC catalog: relocate each ISC event relative to the baseline using the DDse algorithm → ISC-DDse
- ③ Simultaneous DD inversion of *ISC-DDse* catalog \rightarrow *gDD*
- (4) Cross-correlate waveforms for nearby events.
- (5) Simultaneous DD inversion of combined pick and correlation delay times → final gDD catalog.
- 6 Use gDD catalog for real-time operation \rightarrow gDD-RT

Total ISC/EDR (10+ stations).....1,800,000 events

EHB catalog (double-differenced)

- Total ISC/EDR (10+ stations).....1,800,000 events

gDD catalog (current status)

- Total ISC/EDR (10+ stations).....1,800,000 events

gDD results – Aleutian relocations

Southern Alaska

- ALEUT active source data (Shillington et al., 2015)
- USArray

Southern Alaska

ISC

gDD

Initial waveform cross-correlation results

Aleutian Arc

Mid Atlantic Ridge

- ~30 million, 60,000 events
- Windows: 7/8 sec
- Filter: 0.5-2 Hz
- Correlation coefficient: > 0.4

~3 million; 13,000 events

Initial analysis with fixed set of parameters!

Correlation data for Aleutians

Pick DT - Xcorr DT:

Correlated events

Computational aspects

- Traditional multi-core CPU computing OK for regional-applications such as northern CA (except detection).
- Moving global-scale or high-density DD applications into real-time environments requires better computational solutions:

➔ Faster algorithms

PETSc for inversions

➔ Faster processors

GPUs for time-series analysis and searches

➔ Faster storage solutions

- Access to hundreds of millions of files
- SSD

Summary

- The ISC bulletin continuous to be a tremendously valuable data set for the seismological community and beyond.
- Recent advances in analysis methods and computing performance offer new opportunities for revisiting the 50 years of curated ISC picks.
- High-res relocations sharpen the view of seismicity in most active regions around the world, in particular along subduction zones where event density is high, but also along mid-ocean ridges where existing hypocenters are especially poorly located.
- The new data offers the opportunity to investigate earthquake processes and fault structures along entire plate boundaries at the ~km scale, and provides a common framework that facilitates analysis and comparisons of findings across different plate boundary systems.

Thank You to the ISC and contributing partners!!!